A PIC-Based Approach to Locality Restrictions on Movement

The Minimal Link Condition (MLC) and the Condition on Extraction Domain (CED) are arguably the two most widely adopted locality constraints on movement in current syntactic theory. According to the MLC (Rizzi (1990), Chomsky (1995, 2001, 2005)), movement steps must be minimal in the sense that they may not cross an intervening item of the same type. According to the CED (Huang (1982), Chomsky (1986), Manzini (1990), Cinque (1990)), movement steps must not cross a barrier (where, simplifying a bit, a barrier is a non-complement). With the Phase Impenetrability Condition (PIC, Chomsky (2000; 2001; 2005; 2007)), recent minimalist approaches envisage a further constraint which (although motivated primarily by complexity considerations) requires movement operations to apply in a strictly local manner. This gives rise to redundancies. Furthermore, it can be argued that both the MLC and the CED raise conceptual problems in a strictly derivational approach to syntax (like recent versions of the minimalist program) in which the part of syntactic structure that is active, and accessible, is extremely small throughout the derivation. Finally, there are also several empirical problems with these constraints as well. Some of these are well-known, others – like intervention effects without c-command, or melting effects with local movement across what would normally predicted to be a barrier – will be highlighted in the course.

Given this state of affairs, I would like to pursue the hypothesis that both the MLC and the CED can in fact be dispensed with, with MLC and CED effects following from the PIC, in interaction with independently motivated assumptions about movement and structure-building. In a nutshell, MLC effects follow from the PIC because the lower of two items that would in principle qualify for movement to some designated landing site is not accessible anymore by the syntactic derivation (being contained in the domain of a phase head); and CED effects follow from the PIC under the assumption that edge features (that trigger intermediate movement steps to phase edges) can only be assigned to a phase head as long as the phase head is “active”, in a sense to be made precise (essentially, a phase head is active only as long as it has not yet discharged its last argument, i.e., as long as it has not yet merged with its outermost specifier). In both cases, certain effects can be derived under a standard notion of phase that covers vP, CP, and DP; however, a further reduction of the size of phases (such that, e.g., every phrase is a phase) can be shown to yield further well-established MLC and CED effects. The empirical evidence used throughout comes from a variety of languages, but the focus will be on Indo-European languages like German, English, and Czech.

I will proceed as follows. In the first lecture, I address the question of how MLC effects can be derived from the PIC; in the second lecture, I do the same thing for CED effects. In the third lecture, I look at how the approach to movement and locality developed thus far can account for the severe locality restrictions on head movement (without being able to invoke the MLC to derive the Head Movement Constraint). Finally, in the last lecture I address the issue of remnant movement, as in constructions involving partial VP topicalization in German. Standardly, restrictions on remnant movement have relied on both the MLC and the CED (see, e.g., Webelhuth & den Besten (1990), Kitahara (1997), Takano (1997), Mueller (1998)) – with these constraints gone, it seems that constraints on improper movement (of the type proposed in Mueller & Sternefeld (1993), Grewendorf (2004), Abels (2006)) will now have to do most of the work.